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ABSTRACT 

We have developed a set of web-based SNP selec­
tion tools (freely available at http://www.niehs.nih. 
gov/snpinfo) where investigators can specify 
genes or linkage regions and select SNPs based 
on GWAS results, linkage disequilibrium (LD), and 
predicted functional characteristics of both coding 
and non-coding SNPs. The algorithm uses GWAS 
SNP P-value data and finds all SNPs in high LD 
with GWAS SNPs, so that selection is from a much 
larger set of SNPs than the GWAS itself. The pro­
gram can also identify and choose tag SNPs 
for SNPs not in high LD with any GWAS SNP. We 
incorporate functional predictions of protein struc­
ture, gene regulation, splicing and miRNA binding, 
and consider whether the alternative alleles of a 
SNP are likely to have differential effects on func­
tion. Users can assign weights for different func­
tional categories of SNPs to further tailor SNP 
selection. The program accounts for LD structure 
of different populations so that a GWAS study from 
one ethnic group can be used to choose SNPs for 
one or more other ethnic groups. Finally, we provide 
an example using prostate cancer and demonstrate 
that this algorithm can select a small panel of SNPs 
that include many of the recently validated prostate 
cancer SNPs. 

INTRODUCTION 

The completion of the International HapMap Project (1) 
and the development of advanced genotyping technologies 
have made genome-wide association studies (GWAS) pos­
sible. These studies typically genotype more than 1000 
cases and 1000 controls for 300 K to 1 million SNPs. A 
number of GWAS have been published with many more in 

progress (2–4). A number of disease-associated SNPs have 
been identified and confirmed by these breakthrough stud­
ies with many more yet to come. Repeating GWAS 
in additional individuals has helped to find more dis­
ease-associated SNPs, although doing so is costly. 
Interestingly, the SNPs identified and subsequently con­
firmed in large replication samples are not always those 
with the smallest P-value in the GWAS, and two GWAS 
may have radically different P-values assigned to a con­
firmed SNP. For example, in prostate cancer a confirmed 
SNP in MSMB from the initial GWAS had a P-value of 
only 0.042, but the P-value was 7.31 x 10–13 in a follow up 
study (4,5). Thus the list of potential SNPs from any 
GWAS remains large. This large SNP list poses a problem 
for validation studies where a very large number of people 
are genotyped because custom arrays can cost more than 
standard GWAS arrays. 

For many diseases there exists a rich, diverse and 
growing literature that can be used to identify genes and 
chromosomal regions of high interest. This literature 
includes existing genetic studies of linkage and candidate 
genes as well as research on disease pathogenesis. For 
example, information about disrupted cell signaling path­
ways and genomic-level expression data from comparisons 
of tumor and normal tissues have identified interesting 
candidate genes for cancer. Thus investigators may 
have a large but finite set of genes and genomic regions 
that they feel deserve particular scrutiny or they may 
have a special interest in certain genes or chromosomal 
regions. 

Agnostic GWAS data provide a unique opportunity for 
hypothesis driven candidate gene exploration, but the 
sheer size and complexity of GWAS data can be difficult 
to manage. Although it may not be difficult to find which 
SNPs of a gene are directly included in a GWAS panel, it 
is harder to determine which additional SNPs are tagged 
by the panel, particularly when examining multiple ethnic 
groups where linkage disequilibrium (LD) structure and 
allele frequencies differ. There are a growing array of tools 
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for gene annotation (e.g. identifying regulatory elements, 
alternative splicing, miRNA-binding sites), but many 
researchers may find it difficult to gather and employ 
these algorithms. Finally, while such tools predict puta­
tive functional regions for the Reference Sequence, they 
do not necessarily consider if the alternative alleles of 
SNPs in that sequence are likely to have different 
consequences. 

Here we describe a comprehensive web server designed 
to select SNPs for genetic association studies. In designing 
this application we provide 3 pipelines for SNP selection 
with options to combine all three pipelines. The candidate 
gene pipeline uses both a user-provided list of candidate 
genes and disease-specific GWAS data [readily available 
from dbGaP (www.ncbi.nlm.nih.gov/sites/entrez?db= 
gap) and elsewhere] to select SNPs that are predicted to 
have functional consequences and that are in high LD 
with a small P-value GWAS SNP. For genes where a 
large proportion of the SNPs were not in LD with any 
GWAS SNP and thus are uninvestigated in the GWAS, 
the web application can pick LD tag SNPs to evaluate the 
untagged SNPs. The second, genomic pipeline selects 
SNPs with likely functional consequences from SNPs 
with small P-value in a GWAS and from SNPs in high 
LD with such SNPs. The third, linkage pipeline uses 
a user-provided list of linkage regions to select small 
P-value GWAS SNPs for each linkage region. The web 
application has information on all SNPs in HapMap and 
dbSNP and automatically constructs ethnic-specific LD 
relationships from both sources provided that the SNPs 
have population data available. In this way, SNPs that 
were not genotyped in a GWAS, but are in LD with a 
SNP that was genotyped, can be screened appropriately 
and GWAS data generated in one ethnic group can be 
used to pick SNPs in one or more other ethnic groups. 
We illustrate this application using prostate cancer as an 
example in which we start with a set of a priori candidate 
genes, prostate cancer GWAS data, and a set of linkage 
regions, and use the pipelines to select a small panel of 
1361 SNPs. We evaluate the utility of the application 
against the results of a follow-up validation study that 
screened a much larger panel of 27 000 SNPs genotyped 
in 8000 cases and controls and find that we included five 
of the seven SNPs found to be associated with prostate 
cancer. 

METHODS 

Candidate gene pipeline 

A list of candidate genes for a particular disease can be 
gleaned from published association studies, gene expres­
sion studies, disease pathways and the specific interests of 
an investigator. Such lists may be very large, so we first 
filter the list against GWAS results as shown in Figure 1. 
We use SNPs that have genotype data in dbSNP as our 
source of SNPs in and near a gene (for a user-specified 
flanking region around the gene). We keep a gene if it has 
at least one small P-value SNP (less than or equal to a 
user-specified threshold, T1) in the GWAS. We also keep 
genes that were not adequately represented by SNPs in the 
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GWAS panel. The percent of common SNPs (within a 
gene and flanking region) in high LD (pairwise r 2 

2 a 
user-specified threshold) with any GWAS SNP (including 
GWAS SNPs outside the gene and flanking region) 
is calculated and genes with coverage less than a user-
specified cutoff A% are retained. Genes that do not 
have SNPs with small P-value but do have sufficient cov­
erage by GWAS SNPs are excluded from further analysis. 
For the candidate genes that pass the above screen we 

extract SNPs from dbSNP and process this list as shown 
in Figure 1. If a SNP was examined in the GWAS and had 
a P-value less than the user-specified threshold T1 it is 
retained. If a SNP was not in the GWAS but was in 
high LD with a GWAS SNP that had a P-value larger 
than T1 it is eliminated because we reason that it was 
adequately evaluated by the GWAS and found to have 
no association with disease. We then score all retained 
SNPs for functional significance and apply different 
minor allele frequency (MAF) filters depending on the 
functional category of the SNP. These user-specified 
MAF filters are provided because functionally important 
SNPs often have lower MAF due to natural selection (6) 
and we wish to provide extra flexibility to retain functional 
SNPs below the MAF filter being applied to SNPs without 
such function. The details of the functional predictions 
used in this and other pipelines are provided in a separate 
section below. 
In the final processing step we select LD tag SNPs. 

Because there are certain advantages to having functional 
and small P-value SNPs directly assessed by the genotyp­
ing panel (instead of being indirectly assessed via LD) 
we provide for the assignment of user-specified weights 
for different categories of functional SNPs and small 
P-value SNPs. If weights are assigned the null value of 
1, then tag SNPs are selected simply by rank order, so 
that SNPs that are in high LD with the largest number 
of SNPs are selected first and SNPs that tag only them­
selves (singleton tags) are selected last. If a functional SNP 
has a weight applied, then the weight act as multiplier of 
the actual number of SNPs tagged so that it is more likely 
to be selected early. For example, a functional SNP with a 
weight of two that is in LD with four SNPs (including 
itself) would have a weighted tag value of 2 x 4=8.  
Investigators may modify a variety of values (e.g. 
P-value threshold T1, LD threshold, or weights) to 
adjust selected SNP counts to fit their genotyping panel 
size and budget. We provide two options for additional 
SNP reduction that we think are useful: (i) Each SNP 
must be in LD with a user-specified minimum number of 
common SNPs (after multiplied by the user-assigned 
weights). For example, this option can be used to elimi­
nate singleton SNPs. (ii) A user can also specify the 
maximum number of SNPs that are allowed for any one 
gene using a method which is similar to selecting the best 
N SNPs to optimize power (7). To insure that each gene 
has some coverage, we also provide a user-specified min­
imum number of best SNPs (in terms of number of SNPs 
captured at a specific LD threshold) that must be selected 
for each gene even if they do not meet the previous 
criterion for tag SNPs. 

www.ncbi.nlm.nih.gov/sites/entrez?db
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Figure 1. GenePipe: decision tree to prioritize SNPs for candidate genes based on GWAS results, SNP functional prediction characteristics and pair-
wise LD. The six-sided boxes represent decision points and rectangles represent action steps or end points. 

Figure 2. (A) GenomePipe: flow chart for functional SNP selection 
from SNPs that are in high LD with small P-value GWAS SNPs. (B) 
LinkagePipe: flow chart to prioritize SNPs in linkage loci based on 
P-values in GWAS. 

Genome pipeline 

Small P-value GWAS SNPs were considered in the previ­
ous pipeline if they occur within a specified candidate 
gene, but for those in the remainder of the genome we 
provide additional means of selection based on function 
and evolutionary conservation (Figure 2A). In providing 
this screen we consider not only all the GWAS SNPs that 

were found to have small P-values, but the much larger 
set of SNPs in dbSNP that meet two criteria: (i) they 
are within a user-specified distance from a small P-value 
GWAS SNP; and (ii) they are known to be in high LD 
with a small P-value GWAS SNP. From this large pool we 
screen SNPs based on functional predictions and apply 
MAF filters. Finally, we eliminate redundant SNPs 
based on a user-defined LD threshold. 

Linkage pipeline 

Linkage studies of family-based samples are another val­
uable source for candidate regions of the genome involved 
in disease. GWAS panels have much higher SNP density 
than linkage studies, and provide finer mapping infor­
mation using large population-based samples. Within 
each user-specified linkage region, we select small 
P-value GWAS SNPs at a user-specified threshold, rank 
them by P-value and select a user-specified number of 
non-redundant SNPs (based on pairwise LD) that have 
the smallest P-value (Figure 2B). 

Functional SNP prediction 

Depending on their position and flanking sequence in a 
gene, SNPs may have varied functional effects on protein 
sequence, transcriptional regulation, RNA splicing or 



          

          
        

           
          
           

        
       

          
       

          
     

        
         
           
       

           
          

        
 

       
             
        

       
            

         
          

          
         

         
        

           
         

         
            
        

       
       
          

        
          

        
         
         
      

          
       

          
        

         
       
         
       

          
         

       
        
          

         

           
           
           
         

           
         
      
          

         
         
         

          
           
         

         
      
          
       

         
            
     

     
       

          
      
           

          
            

         
          
        
         
        
        

        
         
          

           
            

    

    
        
    
          

       
      

           
         

         
       

       
          

          
          
           
           
       
          

          
        

           
          
           

        
       

          
       

          
     

        
         
           
       

           
          

        
 

       
             
        

       
            

         
          

          
         

         
        

           
         

         
            
        

       
       
          

        
          

        
         
         
      

          
       

          
        

         
       
         
       

          
         

       
        
          

         

          

           
           
           
         

           
         
      
          

         
         
         

          
           
         

         
      
          
       

         
            
     

     
       

          
      
           

          
            

         
          
        
         
        
        

        
         
          

           
            

    

    
        
    
          

       
      

           
         

         
       

       
          

          
          
           
           
       
          

miRNA binding. There are a variety of in silico tools 
available for prediction of such functional regions within 
genes, and we use these tools to help identify SNPs that 
are more likely to affect biological function. In doing so 
we examine not only whether a SNP occurs within a likely 
functional region, but also whether the alternative alleles 
are likely to have differential functional effects. 

Coding SNPs. Within the coding region of a gene, we 
identify nonsense SNPs that lead to premature termina­
tion of translation and are therefore very likely to affect 
protein function. In addition, non-synonymous poly­
morphisms (nsSNPs) that lead to amino acid changes 
may also affect protein function depending on the location 
and nature of the amino acid substitution. We used two in 
silico classification programs, Polyphen (8) and SNPs3D 
(9), to predict the effect of an amino acid substitution on 
the structure and function of a human protein, and then 
classified nsSNPs as possibly or probably damaging or 
benign. 

Transcription-factor-binding sites (TFBS). If a SNP is 
located at a TFBS of a gene, it may affect the level or 
timing of gene expression. We identified such SNPs 
according to the procedure shown in Supplementary 
Figure 1. For each SNP within 5 kb upstream or 1 kb 
downstream of a transcription start site (TSS), we first 
extracted 29 bp DNA sequence on either side of the 
SNP, and then used the MATCH (10) method to predict 
possible TFBSs in the resulting 59 base pair sequence 
using each alternative allele. A SNP was classified as 
affecting TFBS activity if MATCH predicted a TFBS 
with one allele but not with the other and the difference 
in the matrix similarity scores (MSS) or core similarity 
scores (CSS) between the two alleles was 20.2. Possible 
scores for MSS and CSS range from 0 to 1 (10). We per­
formed predictions using all the 187 position weight matri­
ces classified as high quality non-redundant vertebrate 
(mouse, rat and human) matrices in TRANSFAC 
Release 12.1 (11). We used the default set of MATCH 
score thresholds provided by TRANSFAC to allow for 
10% false negative results. We also filtered out SNPs in 
non-conserved TFBS. To find conserved TFBS, we first 
identified the mouse or rat homolog sequence for each 
predicted TFBS in the human genome based on 17-way 
vertebrate multiz alignment from UCSC genome bioinfor­
matics web site. We then ran MATCH on these homolog 
sequences with the same position weight matrices. 
We categorized a TFBS as conserved if both mouse and 
rat homolog sequences also have the same predicted 
TFBS. Several studies (12–14) show that using both the 
predicted conserved TFBS together with the regulatory 
potential score (13) can improve predictions, so we also 
provide this option on the web server. 

Splice sites. SNPs that are located within two base pairs 
of an intron–exon junction, or located at exonic splicing 
enhancer (ESE) or exonic splicing silencer (ESS)-binding 
sites may disrupt mRNA splicing and severely affect pro­
tein function (15). We predicted ESE and ESS sites using 
procedure outlined in Supplementary Figure 2. If an exon 
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was longer than 140 base pairs, only SNPs within the first 
and last 70 base pairs of each exon were evaluated because 
the effect of alternative alleles on the activity of ESEs and 
ESSs decrease with distance from the splice site (16,17). 
We only considered a maximum of 10 base pairs on either 
side of a SNP because there are no significant compensa­
tory or correlated relationships between non-overlapping 
ESE or ESS motifs (18). ESE sites were predicted using 
RESCUE ESE (19) or ESEfinder (20) methods. ESS sites 
were predicted using the FAS–ESS (21) method. A SNP 
was classified as affecting splicing activity if there was 
at least one predicted binding site with one allele, but 
none with the other allele. In order to reduce false positive 
results, we excluded predicted binding sites within an exon 
if, based on Ensembl transcripts isoform data, there were 
no alternatively spliced transcripts observed involving 
the exon. For example, suppose a gene has eight exons 
and five different transcript isoforms reported in 
Ensembl. If there was a predicted ESE or ESS-binding 
site in exon 3 but all five transcripts include exon 3, then 
we would exclude the site. 

MicroRNA-binding sites. MicroRNAs (miRNA) are 
21–23-base single-stranded RNA molecules that bind to 
the end of a messenger RNA (mRNA) and can inhibit 
protein translation. Human miRNA is usually comple­
mentary to a site in the 30 UTR region of an mRNA. 
We extracted the 20 base pair flanking sequence on both 
sides of SNPs in the 30 UTR region of genes. We search for 
possible miRNA-binding sites on the 41 base pair DNA 
sequence for each allele of a SNP using the software 
miRanda (22), with default parameter values. Using the 
procedure outlined in Supplementary Figures 3 and 4, we 
predicted putative miRNA-binding sites for all 677 human 
miRNAs in the miRBase database (23). We excluded 
SNPs in miRNA-binding sites that were not conserved 
in either the mouse or rat homolog sequences. We classi­
fied a SNP as affecting miRNA-binding site activity if the 
miRanda scores for the two alleles differed by 216, a value 
which is equivalent to that of a SNP in the ‘seed’ region 
of a miRNA-binding site. 

Web server and usage 

We have incorporated these methods into a user-friendly 
web server: SNPinfo (http://www.niehs.nih.gov/snpinfo). 
The web utility is supported by a set of optimized 
mySQL databases. Depending on the specific pipeline 
being used (GenePipe, GenomePipe or LinkagePipe), 
an investigator may input several types of data: a list of 
candidate genes, a GWAS SNP list of Reference Sequence 
(rs) numbers with associated P-value from the GWAS of 
interest, or a list of linkage loci. 
LD relationships between SNPs may differ between 

ethnic groups so we have deposited, as a central resource 
of our web server, the information on SNP genotype data 
and pairwise LD for each ethnic group. This allows the 
user to incorporate the results of a GWAS from one ethnic 
group into LD tag SNP selection for one or more different 
ethnic groups. To evaluate LD relationships between 
SNPs, a user can use not only pair-wise LD data 

http://www.niehs.nih.gov/snpinfo
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calculated from HapMap genotype data for 11 popula­
tions in HapMap Phase III, but also has the option to 
use pair wise LD based on all dbSNP genotype data for 
each of five population groups (African American, Asian, 
European, Hispanics and sub-Saharan African). dbSNP 
genotype data includes all deposited HapMap data as 
well as additional SNPs, individuals and ethnic groups. 
dbSNP includes genotype data from many different geno­
typing and resequencing efforts on sometimes overlapping 
sets of individuals. We combined genotypes for indivi­
duals of the same ethnic group. If multiple submitters 
genotyped the same SNP in the same person and the gen­
otype calls are inconsistent, we assigned the person the 
most commonly called genotype or a missing call 
if they are equally split. We employed an efficient 
greedy algorithm that was originally implemented in 
TAGster (24) to select LD tag SNP for single or multiple 
populations. 
In addition to the three pipelines the server provides 

three additional tools. The first of these ‘TagSNP’ allows 
a user to combine the SNP lists selected from different 
pipelines and eliminate redundant SNPs based on LD 
relationships and SNPs with low SNP design scores. It 
also allows the user to mandate inclusion of SNPs of spe­
cial interest, or exclusion of undesired SNPs. This same 
tool may be used as a stand-alone tool to find and list 
SNPs, choose LD tag SNPs, and produce high quality 
LD or genotype figures for individual genes or chromo­
some regions. A second stand-alone tool, ‘FuncPred’ 
allows a user to query functional prediction results and 
ethnic group allele frequencies for all of the SNPs in a 
gene or chromosomal region, or for a list of input SNPs. 
The final tool ‘SNPseq’ allows a user to visualize SNP 
related information and CpG regions in DNA sequence 
context for an individual SNP, gene, or region of a chro­
mosome. This is particularly useful for PCR primer 
design. 

Example and validation 

We have used the GWAS data from the Cancer Genetics 
Markers of Susceptibility (CGEMS) project on prostate 
cancer (4) to demonstrate the utility of our method. This 
GWAS genotyped 550 K SNPs in 1172 prostate cancer 
cases and 1157 controls of European origin. We used 
our web utility to construct a small SNP genotyping 
panel for a genetic association study on prostate cancer 
in African-American and European-American men. 
Based on published candidate gene association studies, 

gene expression studies, and pathway analysis we con­
structed a list of 848 candidate genes of interest in prostate 
cancer. Using GenePipe, 542 genes were excluded because 
none of the GWAS SNPs in these genes had a P-value 
.0.05 and there were sufficient GWAS SNPs to capture 
(at r 2 0.8) more than 50% of common (MAF 2 0.05) 
SNPs in Europeans. For the remaining 306 genes, 822 
non-redundant SNPs were selected as outlined in 
Figure 1 with the following GenePipe parameter values: 
gene upstream region = 5 kb, gene downstream 
region = 1 kb, MAF = 0.05 for all SNPs, weight = 3 for 
any predicted functional SNP and small P-value SNPs, 

weight = 1 for all other SNPs, r 2 threshold = 0.8, mini­
mum number of SNPs tagged by each selected tag 
SNP = 3, minimum number of tag SNPs/gene = 1, and 
maximum number of tag SNPs/gene = 5. 

The CGEMS GWAS reported 6034 GWAS SNPs with 
P . 0.01. GenomePipe identified 41755 SNPs that are in 
high LD with these GWAS SNPs (r 2 

2 0.8), and from the 
41755 SNPs selected 543 common SNPs (MAF 2 0.05) 
that were predicted to be functional by at least one of 
the prediction methods. 

Published studies have identified 43 non-overlapping 
linkage regions for prostate cancer. As shown in 
Figure 2B, we used LinkagePipe to select 266 GWAS 
SNPs using the following parameter values (MAF = 
0.05, Maximum number of SNPs/linkage locus = 7, 
GWAS P threshold = 0.01, LD threshold = 0.8). 

The resulting SNP lists from GenePipe, GenomePipe 
and LinkagePipe were combined and we used TagSNP 
to eliminate duplicate and redundant SNPs, or SNPs 
with low assay design scores, yielding a set of 1361 
SNPs. Of these, 709 (52%) were GWAS SNPs and the 
remaining 48% were new SNPs not in the GWAS which 
were selected to provide additional functional examina­
tion of genes. 

Although the selection algorithm used the P-value data 
for 550 K SNPs from the CGEMS GWAS, we did not, in 
this example, use information from other GWAS data sets 
or from the validation portion of the CGEMS initial study 
(4). The CGEMS follow up study was particularly robust 
because it genotyped 26 958 SNPs, including all SNPs with 
P-value <0.068 from the initial CGEMS GWAS, in 3941 
cases and 3964 controls (5). This provides an unbiased 
opportunity to evaluate whether the very small set of 
SNPs selected by our algorithm include the SNPs vali­
dated in a genotyping panel that was many times larger. 
The CGEMS validation study identified seven prostate 
cancer related SNPs which had P-value ranks in the initial 
GWAS ranging from 116 (P = 0.0004) to 24407 
(P = 0.042). Our algorithms selected five (71%) of those 
seven SNPs. Three of the five SNPs were selected by 
GenePipe, one was selected by GenomePipe and three 
were selected by LinkagePipe. Of the two SNPs that 
were missed, rs10486567 in JAZF1 was not in our candi­
date gene list because at the time we constructed the gene 
list, JAZF1 had not previously been reported in the liter­
ature as having any association with prostate cancer. The 
other SNP, rs10896449, was not located in a known gene 
or linkage region. Although the very small panel of SNPs 
selected by the algorithm cannot substitute for massive 
follow-up genotyping, it performs very well with 2.5% 
(709 vs. 26 958) of the GWAS SNPs, and in addition ded­
icates almost half of the SNPs to new functional and can­
didate gene polymorphisms that were unexplored in the 
half million GWAS SNP panel. 

DISCUSSION 

SNP selection for an association study can be a complex 
problem. Decades of diverse investigation provide a tre­
mendous amount of information on genes, pathways, and 
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chromosomal regions that appear to be linked to disease. 
GWAS offers an agnostic approach to investigating 
SNP-disease association, and the results of such studies 
offers a wealth of data to inform the next generation of 
investigation. Here, we develop a user-friendly web server 
to incorporate such clinical, experimental, mechanistic, 
and computational information with the results of 
GWAS in order to organize, annotate, and select SNPs. 
The web server can be used for either small or large-scale 
SNP selection and is particularly useful for association 
studies. It uses both functional prediction and GWAS 
results to select not only SNPs included in the GWAS, 
but other functional SNPs in dbSNP that were not in 
the GWAS. Considering the varied interests and emphasis 
different investigators may bring to a problem, we pro­
vided many tunable parameters in each web utility, so 
the algorithm can be adjusted to meet different needs. 

We employ several methods for functional sequence 
assessment and predict functional consequence of different 
alleles of a SNP. To reduce the number of false positive 
results, we perform the predictions in only the most prob­
able genomic regions for each category of functional 
sequence site (such as the gene promoter region for TFBS 
or the 30 UTR for microRNA-binding sites) and use phy­
logenetic footprint information to filter out non-conserved 
putative functional sequence. The SNP selection algorithm 
uses functional prediction results to prioritize LD tag SNP 
selection. These LD tag SNPs capture other unexamined 
SNPs in and around a gene, including SNPs with unknown 
or unpredicted functional consequences. The web utility 
options allow an investigator to choose prediction methods 
and assign weights to those predictions for study-specific 
SNP selection. Functional sequence prediction is a rapidly 
developing field. The web server structure allows rapid 
updates as better methods of functional prediction 
become available and it allows expansion to include pre­
dictions on other biologic functions. 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR Online. 

FUNDING 

This research was supported by the Intramural Research 
Program of the NIH, National Institute of Environmental 
Health Sciences. Funding for open access charge: 
National Institute of Environmental Health Sciences. 

Conflict of interest statement. None declared. 

REFERENCES 

1. The International HapMap Consortium, (2007) A second genera­
tion human haplotype map of over 3.1 million SNPs. Nature, 449, 
851–861. 

2. Altshuler,D., Daly,M.J. and Lander,E.S. (2008) Genetic mapping in 
human disease. Science, 322, 881–888. 

3. Kruglyak,L. (2008) The road to genome-wide association studies. 
Nat. Rev. Genet., 9, 314–318. 

4. Yeager,M., Orr,N., Hayes,R.B., Jacobs,K.B., Kraft,P., 
Wacholder,S., Minichiello,M.J., Fearnhead,P., Yu,K., Chatterjee,N. 

Nucleic Acids Research, 2009, Vol. 37, Web Server issue W605 

et al. (2007) Genome-wide association study of prostate cancer 
identifies a second risk locus at 8q24. Nat. Genet., 39, 645–649. 

5. Thomas,G., Jacobs,K.B., Yeager,M., Kraft,P., Wacholder,S., 
Orr,N., Yu,K., Chatterjee,N., Welch,R., Hutchinson,A. et al. (2008) 
Multiple loci identified in a genome-wide association study of 
prostate cancer. Nat. Genet., 40, 310–315. 

6. Cargill,M., Altshuler,D., Ireland,J., Sklar,P., Ardlie,K., Patil,N., 
Shaw,N., Lane,C.R., Lim,E.P., Kalyanaraman,N. et al. (1999) 
Characterization of single-nucleotide polymorphisms in coding 
regions of human genes. Nat. Genet., 22, 231–238. [erratum appears 
in Nat. Genet. (1999), 23, 73]. 

7. de Bakker,P.I., Yelensky,R., Pe’er,I., Gabriel,S.B., Daly,M.J. and 
Altshuler,D. (2005) Efficiency and power in genetic association 
studies. [see comment]. Nat. Genet., 37, 1217–1223. 

8. Sunyaev,S., Ramensky,V., Koch,I., Lathe,W., Kondrashov,A.S. 3rd 
and Bork,P. (2001) Prediction of deleterious human alleles. Human 
Mol. Genet., 10, 591–597. 

9. Yue,P., Melamud,E. and Moult,J. (2006) SNPs3D: candidate gene 
and SNP selection for association studies. BMC Bioinformat., 7, 
166. 

10. Kel,A.E., Gossling,E., Reuter,I., Cheremushkin,E., 
Kel-Margoulis,O.V. and Wingender,E. (2003) MATCH: a tool for 
searching transcription factor binding sites in DNA sequences. 
Nucleic Acids Res., 31, 3576–3579. 

11. Matys,V., Kel-Margoulis,O.V., Fricke,E., Liebich,I., Land,S., 
Barre-Dirrie,A., Reuter,I., Chekmenev,D., Krull,M., Hornischer,K. 
et al. (2006) TRANSFAC and its module TRANSCompel: 
transcriptional gene regulation in eukaryotes. Nucleic Acids Res., 
34, D108–D110. 

12. Elnitski,L., Hardison,R.C., Li,J., Yang,S., Kolbe,D., Eswara,P., 
O’Connor,M.J., Schwartz,S., Miller,W. and Chiaromonte,F. (2003) 
Distinguishing regulatory DNA from neutral sites. Genome Res., 13, 
64–72. 

13. King,D.C., Taylor,J., Elnitski,L., Chiaromonte,F., Miller,W. and 
Hardison,R.C. (2005) Evaluation of regulatory potential and 
conservation scores for detecting cis-regulatory modules in aligned 
mammalian genome sequences. Genome Res., 15, 1051–1060. 

14. Elnitski,L., Jin,V.X., Farnham,P.J. and Jones,S.J. (2006) Locating 
mammalian transcription factor binding sites: a survey of com­
putational and experimental techniques. Genome Res., 16, 
1455–1464. 

15. Yuan,H.Y., Chiou,J.J., Tseng,W.H., Liu,C.H., Liu,C.K., Lin,Y.J., 
Wang,H.H., Yao,A., Chen,Y.T. and Hsu,C.N. (2006) FASTSNP: 
an always up-to-date and extendable service for SNP function 
analysis and prioritization. Nucleic Acids Res., 34, W635–641. 

16. Fairbrother,W.G., Holste,D., Burge,C.B. and Sharp,P.A. (2004) 
Single nucleotide polymorphism-based validation of exonic splicing 
enhancers. PLos Biol., 2, E268. 

17. Graveley,B.R., Hertel,K.J. and Maniatis,T. (1998) A systematic 
analysis of the factors that determine the strength of pre-mRNA 
splicing enhancers. EMBO J., 17, 6747–6756. 

18. Xiao,X., Wang,Z., Jang,M. and Burge,C.B. (2007) Coevolutionary 
networks of splicing cis-regulatory elements. Proc. Natl Acad. 
Sci.USA, 104, 18583–18588. 

19. Fairbrother,W.G., Yeo,G.W., Yeh,R., Goldstein,P., Mawson,M., 
Sharp,P.A. and Burge,C.B. (2004) RESCUE-ESE identifies candi­
date exonic splicing enhancers in vertebrate exons. Nucleic Acids 
Res., 32, W187–W190. 

20. Cartegni,L., Wang,J., Zhu,Z., Zhang,M.Q. and Krainer,A.R. (2003) 
ESEfinder: a web resource to identify exonic splicing enhancers. 
Nucleic Acids Res., 31, 3568–3571. 

21. Wang,Z., Rolish,M.E., Yeo,G., Tung,V., Mawson,M. and 
Burge,C.B. (2004) Systematic identification and analysis of exonic 
splicing silencers. [see comment]. Cell, 119, 831–845. 

22. John,B., Enright,A.J., Aravin,A., Tuschl,T., Sander,C. and 
Marks,D.S. (2004) Human MicroRNA targets. PLos Biol., 2, e363 
[erratum appears in PLoS Biol. (2005), 3, e264]. 

23. Griffiths-Jones,S., Saini,H.K., van Dongen,S. and Enright,A.J. 
(2008) miRBase: tools for microRNA genomics. Nucleic Acids Res., 
36, D154–D158. 

24. Xu,Z., Kaplan,N.L. and Taylor,J.A. (2007) TAGster: efficient 
selection of LD tag SNPs in single or multiple populations. 
Bioinformatics, 23, 3254–3255. 




